Constraint-based metabolic targets for the improved production of heterologous compounds across molecular classification
Nicholas Moscatello
Dept. of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260
Search for more papers by this authorCorresponding Author
Blaine A. Pfeifer
Dept. of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260
Correspondence concerning this article should be addressed to B. A. Pfeifer at [email protected].Search for more papers by this authorNicholas Moscatello
Dept. of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260
Search for more papers by this authorCorresponding Author
Blaine A. Pfeifer
Dept. of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260
Correspondence concerning this article should be addressed to B. A. Pfeifer at [email protected].Search for more papers by this authorAbstract
The natural products 6-deoxyerythronolide B (6dEB), erythromycin D, yersiniabactin (Ybt), and salicylate 2-O-β-d-glucoside (SAG), representing a range of primary and secondary metabolites generated through heterologous microbial biosynthesis, were analyzed using computational metabolic engineering for the purpose of predicting improved production. Specifically, flux balance analysis allowed for the comprehensive screening of medium components and the determination of single gene deletions that resulted in improved product titers for the target compounds. Outcomes included the identification of amino acids and alternative carbon sources capable of culture medium supplementation for increased cellular production. Separately, Minimization of Metabolic Adjustment and OptForce were used to identify single gene deletion and overexpression targets, respectively, for improvements to the aforementioned biosynthetic schemes. The computational engineering predictions thus provide a starting point for experimental implementation with the goal of improving metabolic carbon flow to the compounds presented in this study, each of which possesses valuable bioactivity. © 2018 American Institute of Chemical Engineers AIChE J, 64: 4208–4217, 2018
Literature Cited
- 1Reeves AR, Brikun IA, Cernota WH, Leach BI, Gonzalez MC, Weber JM. Engineering of the methylmalonyl-CoA metabolite node of Saccharopolyspora erythraea for increased erythromycin production. Metab Eng. 2007; 9(3): 293-303.
- 2Demain AL. From natural products discovery to commercialization: a success story. J Ind Microbiol Biotechnol. 2006; 33(7): 486-495.
- 3Orth JD, Conrad TM, Na J, et al. A comprehensive genome-scale reconstruction of Escherichia coli metabolism--2011. Mol Syst Biol. 2011; 7: 535.
- 4Alper H, Jin Y-S, Moxley J, Stephanopoulos G. Identifying gene targets for the metabolic engineering of lycopene biosynthesis in Escherichia coli. Metab Eng. 2005; 7(3): 155-164.
- 5King ZA, Lu J, Dräger A, et al. BiGG models: a platform for integrating, standardizing and sharing genome-scale models. Nucleic Acids Res. 2015; 44(D1): D515-D522.
- 6Orth JD, Thiele I, Palsson BØ. What is flux balance analysis? Nat Biotechnol. 2010; 28(3): 245-248.
- 7Feist AM, Palsson BO. The biomass objective function. Curr Opin Microbiol. 2010; 13(3): 344-349.
- 8Boghigian BA, Lee K, Pfeifer BA. Computational analysis of phenotypic space in heterologous polyketide biosynthesis—applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae. J Theor Biol. 2010; 262(2): 197-207.
- 9Ahmadi MK, Pfeifer BA. Recent progress in therapeutic natural product biosynthesis using Escherichia coli. Curr Opin Biotechnol. 2016; 42: 7-12.
- 10Zhang H, Wang Y, Pfeifer BA. Bacterial hosts for natural product production. Mol Pharm. 2008; 5(2): 212-225.
- 11Pfeifer BA, Admiraal SJ, Gramajo H, Cane DE, Khosla C. Biosynthesis of complex polyketides in a metabolically engineered strain of E. coli. Science. 2001; 291(5509): 1790-1792.
- 12Zhang H, Wang Y, Wu J, Skalina K, Pfeifer BA. Complete biosynthesis of erythromycin a and designed analogs using E. coli as a heterologous host. Chem Biol. 2010; 17(11): 1232-1240.
- 13Pfeifer BA, Wang CC, Walsh CT, Kholsa C. Biosynthesis of yersiniabactin, a complex polyketide-nonribosomal peptide, using Escherichia coli as a heterologous host. Appl Environ Microbiol. 2003; 69: 6698-6702.
- 14Fang L, Guell M, Church GM, Pfeifer BA. Heterologous erythromycin production across strain and plasmid construction. Biotechnol Prog. 2018; 34(1): 271-276.
- 15Moscatello N, Swayambhu G, Jones CH, Xu J, Dai N, Pfeifer BA. Continuous removal of copper, magnesium, and nickel from industrial wastewater utilizing the natural product yersiniabactin immobilized within a packed-bed column. Chem Eng J. 2018; 343: 173-179.
- 16Ahmadi MK, Fawaz S, Jones CH, Zhang G, Pfeifer BA. Total biosynthesis and diverse applications of the nonribosomal peptide-polyketide siderophore yersiniabactin. Appl Environ Microbiol. 2015; 81: 5290-5298.
- 17Ahmadi MK, Fang L, Moscatello N, Pfeifer BA. E. coli metabolic engineering for gram scale production of a plant-based anti-inflammatory agent. Metab Eng. 2016; 38: 382-388.
- 18Moscatello N, Qi R, Ahmadi MK, Pfeifer BA. Increased production of yersiniabactin and an anthranilate analog through media optimization. Biotechnol Prog. 2017; 33(5): 1193-1200.
- 19Pistorino M, Pfeifer BA. Efficient experimental design and micro-scale medium enhancement of 6-deoxyerythronolide B production through Escherichia coli. Biotechnol Prog. 2009; 25(5): 1364-1371.
- 20Price ND, Reed JL, Palsson BØ. Genome-scale models of microbial cells: evaluating the consequences of constraints. Nat Rev Microbiol. 2004; 2(11): 886-897.
- 21Varma A, Palsson BO. Stoichiometric flux balance models quantitatively predict growth and metabolic by-product secretion in wild-type Escherichia coli W3110. Appl Environ Microbiol. 1994; 60(10): 3724-3731.
- 22Xu P, Ranganathan S, Fowler ZL, Maranas CD, Koffas MA. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA. Metab Eng. 2011; 13(5): 578-587.
- 23Burgard AP, Pharkya P, Maranas CD. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol Bioeng. 2003; 84(6): 647-657.
- 24Ranganathan S, Suthers PF, Maranas CD. OptForce: an optimization procedure for identifying all genetic manipulations leading to targeted overproductions. PLoS Comput Biol. 2010; 6(4): e1000744.
- 25Lun DS, Rockwell G, Guido NJ, et al. Large-scale identification of genetic design strategies using local search. Mol Syst Biol. 2009; 5(1): 296.
- 26Segre D, Vitkup D, Church GM. Analysis of optimality in natural and perturbed metabolic networks. Proc Natl Acad Sci USA. 2002; 99(23): 15112-15117.
- 27Weaver DS, Keseler IM, Mackie A, Paulsen IT, Karp PD. A genome-scale metabolic flux model of Escherichia coli K–12 derived from the EcoCyc database. BMC Syst Biol. 2014; 8: 79.
- 28Kayser A, Weber J, Hecht V, Rinas U. Metabolic flux analysis of Escherichia coli in glucose-limited continuous culture. I. Growth-rate-dependent metabolic efficiency at steady state. Microbiology. 2005; 151(3): 693-706.
- 29Selvarasu S, Ow DS-W, Lee SY, et al. Characterizing Escherichia coli DH5α growth and metabolism in a complex medium using genome-scale flux analysis. Biotechnol Bioeng. 2009; 102(3): 923-934.
- 30Pfeifer B, Hu Z, Licari P, Khosla C. Process and metabolic strategies for improved production of Escherichia coli-derived 6-deoxyerythronolide B. Appl Environ Microbiol. 2002; 68(7): 3287-3292.
- 31González-Lergier J, Broadbelt LJ, Hatzimanikatis V. Analysis of the maximum theoretical yield for the synthesis of erythromycin precursors in Escherichia coli. Biotechnol Bioeng. 2006; 95(4): 638-644.
- 32Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika. 1946; 33(4): 305-325.
- 33Chemler JA, Fowler ZL, McHugh KP, Koffas MA. Improving NADPH availability for natural product biosynthesis in Escherichia coli by metabolic engineering. Metab Eng. 2010; 12(2): 96-104.
- 34Lin Y, Sun X, Yuan Q, Yan Y. Extending shikimate pathway for the production of muconic acid and its precursor salicylic acid in Escherichia coli. Metab Eng. 2014; 23: 62-69.
- 35Kennedy M, Krouse D. Strategies for improving fermentation medium performance: a review. J Ind Microbiol Biotechnol. 1999; 23(6): 456-475.
- 36Vančura A, Řezanka T, Maršlálek J, Melzoch K, Basařová G, Křišt'an V. Metabolism of L-threonine and fatty acids and tylosin biosynthesis in Streptomyces fradiae. FEMS Microbiol Lett. 1988; 49(3): 411-415.
- 37Rodrıguez E, Gramajo H. Genetic and biochemical characterization of the α and β components of a propionyl-CoA carboxylase complex of Streptomyces coelicolor A3 (2). Microbiology. 1999; 145(11): 3109-3119.