Synthesis of Gold Nanotriangles and Silver Nanoparticles Using Aloevera Plant Extract
S. Prathap Chandran
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India
Search for more papers by this authorMinakshi Chaudhary
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India
Search for more papers by this authorRenu Pasricha
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India
Search for more papers by this authorAbsar Ahmad
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India
Search for more papers by this authorCorresponding Author
Murali Sastry
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India===Search for more papers by this authorS. Prathap Chandran
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India
Search for more papers by this authorMinakshi Chaudhary
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India
Search for more papers by this authorRenu Pasricha
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India
Search for more papers by this authorAbsar Ahmad
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India
Search for more papers by this authorCorresponding Author
Murali Sastry
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India
Nanoscience Group, Materials Chemistry Division, Biochemical Sciences Division, National Chemical Laboratory, Pune 411008, India===Search for more papers by this authorAbstract
Biogenic gold nanotriangles and spherical silver nanoparticles were synthesized by a simple procedure using Aloe veraleaf extract as the reducing agent. This procedure offers control over the size of the gold nanotriangle and thereby a handle to tune their optical properties, particularly the position of the longitudinal surface plasmon resonance. The kinetics of gold nanotriangle formation was followed by UV-vis-NIR absorption spectroscopy and transmission electron microscopy (TEM). The effect of reducing agent concentration in the reaction mixture on the yield and size of the gold nanotriangles was studied using transmission electron microscopy. Monitoring the formation of gold nanotriangles as a function of time using TEM reveals that multiply twinned particles (MTPs) play an important role in the formation of gold nanotriangles. It is observed that the slow rate of the reaction along with the shape directing effect of the constituents of the extract are responsible for the formation of single crystalline gold nanotriangles. Reduction of silver ions by Aloe veraextract however, led to the formation of spherical silver nanoparticles of 15.2 nm ± 4.2 nm size.
References
- 1 Fendler, J. H.; Meldrum, F. C. Colloid chemical approach to nanostructured materials. Adv. Mater. 1995, 7, 607–632.
- 2 El-Sayed, M. A. Some interesting properties of metals confined in time and nanometer space of different shapes. Acc. Chem. Res. 2001, 34, 257–264.
- 3 Shi, A.-C.; Masel, R. I. The effects of gas adsorption on particle shapes in supported platinum catalysts. J. Catal. 1989, 120, 421–431.
- 4 Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.
- 5 Shankar, S. S.; Rai, A.; Ankamwar, B.; Singh, A.; Ahmad, A.; Sastry, M. Biological synthesis of triangular gold nanoprisms. Nat. Mater. 2004, 3, 482–488.
- 6 Maier, S. A.; Brongersma, M. L.; Kik, P. G.; Meltzer, S.; Requicha, A. A. G.; Atwater, H. A. Plasmonics-a route to nanoscale optical devices. Adv. Mater. 2001, 13, 1501–1505.
- 7 Dick, L. A.; McFarland, A. D.; Haynes, C. L.; Van Duyne, R. P. Metal film over nanosphere (MFON) electrodes for Surface-Enhanced Raman Spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 2002, 106, 853–860.
- 8 Shankar, S. S.; Rai, A.; Ahmad, A.; Sastry, M. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem. Mater. 2005, 17, 566–572.
- 9 Jin, R.; Cao, Y.; Mirkin, C. A.; Kelly, K. L.; Schatz, G. C.; Zheng, J. G. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294, 1901–1903.
- 1 Jin, R.; Cao, Y. C.; Hao, E.; Metraux, G. S.; Schatz, G. C.; Mirkin, C. A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425, 487–490.
- 11 Metraux, G. S.; Mirkin, C. A. Rapid thermal synthesis of silver nanoprisms with chemically tailorable thickness. Adv. Mater. 2005, 17, 412–415.
- 12 Hao, E.; Kelly, K. L.; Hupp, J. T.; Schatz, G. C. Synthesis of silver nanodisks using polystyrene mesospheres as templates. J. Am. Chem. Soc. 2002, 124, 15182–15183.
- 13 Pastoriza-Santos, I.; Liz-Marzon, L. M. Synthesis of silver nanoprisms in DMF. Nano Lett. 2002, 2, 903–905.
- 14 Wang, L.; Chen, X.; Zhan, J.; Chai, Y.; Yang, C.; Xu, L.; Zhuang, W.; Jing, B. Synthesis of gold nano- and microplates in hexagonal liquid crystals. J. Phys. Chem. B 2005, 109, 3189–3194.
- 15 Kim, J.; Cha, S.; Shin, K.; Jho, J. Y.; Lee, J. C. Preparation of gold nanowires and nanosheets in bulk block copolymer phases under mild conditions. Adv. Mater. 2004, 16, 459–464.
- 16 Shao, Y.; Jin, Y.; Dong, S. Synthesis of gold nanoplates by aspartate reduction of gold choride. Chem. Commun. 2004, 1104–1105.
- 17 Sarma, T. K.; Chattopadhyay, A. Starch-mediated shape-selective synthesis of Au nanoparticles with tunable longitudinal plasmon resonance. Langmuir 2004, 20, 3520–3524.
- 18 Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648–8649.
- 19 Klaus, T.; Joerger, R.; Olsson, E.; Granqvist, C. G. Silver-based crystalline nanoparticles, microbially fabricated. Proc. Natl. Acad. Sci. U.S.A. 1999, 96, 13611–13614.
- 20 Gardea-Torresdey, J. L.; Parsons, J. G.; Gomez, E.; Peralata-, Videa J.; Troinai, H. E.; Santiago, P.; Yacaman, M. J. Formation and growth of Au nanoparticles inside live Alfalfa plants. Nano Lett. 2002, 2, 397–401.
- 21 Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, M. I.; Ramani, R.; Pasricha, R.; Ajayakumar, P. V.; Alam, M.; Sastry, M. Bioreducion of AuCl4- ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem., Int. Ed. 2001, 40, 3585–3588.
- 22 Ahmad, A.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir 2003, 19, 3550–3553.
- 23 Brown, S.; Sarikaya, M.; Johnson, E. A genetic analysis of crystal growth. J. Mol. Biol. 2000, 299, 725–735.
- 24 Dameron, C. T.; Resse, R. N.; Mehra, R. K.; Kortan, A. P.; Caroll, P. J.; Steigerwald, M. L.; Brus, L. E.; Winge, D. R. Biosynthesis of cadmium sulphide quantum semiconductor crystallites. Nature 1989, 338, 596;
- 25 Labrenz, M.; Druschel, G. K.; Thomsen-Ebert, T.; Gilbert, B.; Welch, S. A.; Kemner, K. M.; Logan, G. A.; Summons, R. E.; Stasio, G. D.; Bond, P. L.; Lai, B.; Kelly, S. D.; Banfield, J. F. Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 2000, 290, 1744–1747.
- 26 Ahmad, A.; Mukherjee, P.; Mandal, D.; Senapati, S.; Khan, M. I.; Kumar, R.; Sastry, M. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus Fusarium oxysporum. J. Am. Chem. Soc. 2002, 124, 12108–12109.
- 27 Mukherjee, P.; Ahmad, A.; Mandal, D.; Senapati, S.; Sainkar, S. R.; Khan, V; Parishcha, R.; Ajaykumar, P. V.; Alam, M.; Kumar, R.; Sastry, M. Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: A novel biological approach to nanoparticle synthesis. Nano Lett. 2001, 1, 515–519.
- 28 Shankar, S. S.; Ahmad, A.; Sastry, M. Geranium leaf assisted biosyntheis of silver nanoparticles. Biotechnol. Prog. 2003, 19, 1627–1631.
- 29 Shankar, S. S.; Ahmad, A.; Pasricha, R.; Sastry, M. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J. Mater. Chem. 2003, 13, 1822–1826.
- 30 Shin, K. H.; Woo, W. S.; Lim, S. S.; Shim, C. S.; Chung, H. S.; Kennely, E. J.; Kinghorn, A. D. Elgonica-dimers A and B, two potent alcohol metabolism inhibitory constituents of Aloe arborescens. J. Nat. Prod. 1997, 60, 1180–1182.
- 31 Umano, K.; Nakahara, K.; Shoji, A.; Shibamoto, T. Aroma chemicals isolated and identified from leaves of Aloe arborescens Mill. Var. natalensis Berger. J. Agric. Food Chem. 1999, 47, 3702–3705.
- 32 Saccu, D.; Bagoni, P.; Procida, G. J. Aloe exudate: Characterization by reversed phase HPLC and headspace GC–MS. J. Agric. Food Chem. 2001, 49, 4526–4530.
- 33 Shipway, A. N.; Lahav, M.; Gabai, R.; Willner, I. Investigations into the electrostatically induced aggregation of Au nanoparticles. Langmuir 2000, 16, 8789–8795.
- 34 Link, S.; El-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanocrystals. Annu. Rev. Phys. Chem. 2003, 54, 331–366.
- 35 Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P. Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 2003, 107, 8717–8720.
- 36 Mandal, S.; Selvakannan, PR.; Phadtare, S.; Pasricha, R.; Sastry, M., Synthesis of a stable gold hydrosol by the reduction of chloroaurate ions by the amino acid, asparitic acid. Proc. Indian Acad. Sci. (Chem. Sci.) 2002, 114, 513–520.
- 37 Wiley: B.; Sun, Y.; Mayers, B.; Xia, Y. Shape controlled synthesis of metal nanostructures: The case of silver. Chem. Eur. J. 2005, 11, 454–463.
- 38 Lefton, C.; Sigmud, W. Mechanisms controlling crystal habits of gold and silver colloids. Adv. Funct. Mater. 2005, 15, 1197–1208.
- 39 Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.